# Polyfluoroalkyl Substances (PFAS) in the Environment (Session 5)

#### > Webinar Starts at 1:30 pm Eastern Daylight Time

- > Sound will be on your computer unless you choose to call in.
  - To "Call In", click on Communicate then Audio Connection and choose to use "Call In".
  - Be sure to enter your ID number when you call or it will not link the call properly to Webex.
- > Contact Ilona or Suzanne with any difficulties.
  - <u>ilona.taunton@nelac-institute.org</u> or suzanne.rachmaninoff@nelac-institute.org

# **Meeting Mechanics**

# This session is being recorded!



# **Meeting Mechanics**

- Phone lines and computer sound are muted when you join the call. Look for the Q&A feature in Webex and type in a Q&A question at any time during the presentation. Choose to send the question to All Panelists. Time permitting, there will be a Q&A session at the end of each presentation.
- If you have technical issues during the presentations, please use Chat to connect with TNI Training.





#### NEMC



#### NEMC



#### NEMC



#### Polyfluoroalkyl Substances (PFAS) in the Environment (session 5) Session Chairs: Charles Neslund, Eurofins Lancaster Laboratories Environmental and Mike Chang, Restek Corporation

- 1:30 Quadrupole HRMS for Quantification and Screening of PFAS in EPA 537.1 and 533 Emily Parry, Agilent Technologies, Inc.
- 2:00 Innovative Technique for Measuring Total Organic Fluoride by Direct-Injection Combustion Ion Chromatography Jay Gandhi, Metrohm USA
- 2:30 Automated Sample Preparation for Determination of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) Angelika Kopf, LCTech GmbH

#### 3:00 BREAK

3:15 Column Chemistry Considerations for Full Coverage of Sample Matrices and Analyte Ranges in PFAS LC-MS/MS Workflows

J Preston, Phenomenex, Inc.

 3:45 Multi-Laboratory Validation of SW-846 Method 8327, Per- and Polyfluoroalkyl Substances (PFAS) using External Standard Calibration and Multiple Reaction Monitoring (MRM) Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)

Troy Strock, USEPA Office of Resource Conservation and Recovery

Quadrupole HRMS for Quantification and Screening of PFAS in EPA 537.1 and 533

Emily Parry, Tarun Anumol Agilent Technologies Inc. Wilmington, DE, USA

Ralph Hindle Vogon Laboratories Cochrane, AB, CA





10/31/2020

NEMC 2020

DE.6166319444

#### Why HRMS: Nominal vs Accurate Mass





#### The Definition of Resolution

The definition of resolution for Q-TOF's, Quad's, FT-MS: 50% intensity definition





444 Agilent

#### Your High School Chemistry Teacher Lied



🔆 Agilent

10/31/2020

#### Calculation of Exact Mass and Error in Measured Mass

| Atom     | Mass of Atom | # of Atoms | Sum       |
|----------|--------------|------------|-----------|
| Hydrogen | 1.00783      | 40         | 40.31300  |
| Carbon   | 12.00000     | 33         | 396.00000 |
| Nitrogen | 14.00307     | 2          | 28.00615  |
| Oxygen   | 15.99492     | 9          | 143.95424 |
| Total    |              |            | 608.27338 |
| Plus H   | 1.00783      | 1          | 1.00783   |
| Total    |              |            | 609.28121 |
| Minus e- | 0.00055      | 1          | 0.00055   |
|          |              |            | 609.28066 |



#### Calculating ppm mass error:

= <u>(Measured Mass – Calculated Mass) X 1,000,000</u> Calculated Mass

.

- = <u>609.28121 609.28066) X 1,000,000</u> 609.28066
- = 0.9027039 ppm mass error if the electron was omitted

10/31/2020

DE.6166319444

**NEMC 2020** 

Agilent

#### What is the Benefit of Accurate Mass? Confidence in Compound Identification!

Reserpine  $(C_{33}H_{40}N_2O_9)$  has a protonated ion at 609.28066

A single quad reports mass to +/-0.1 = 165 ppm

#### Number of possible formulae using only C, H, O & N:

| • | 165 ppm | 209 possibilities |
|---|---------|-------------------|
|   | 10      | 10                |

- 10 ppm 13
- 5 ppm
- 3 ppm

**NEMC 2020** 

• 2 ppm

Accurate mass reduces risk of investing effort on the wrong molecule

7

4

2



#### Accurate Mass + Isotopic Ratios



#### 6546 Q-TOF Performance for small molecule analysis

Resolution independent of acquisition rate for ATP



10/31/2020

DE.6166319444

#### Q-TOF Extended Dynamic Range using two 10GHz channels



#### Screening Workflow with LC/Q-TOF



#### **One Software**

10/31/2020 NEMC 2020 DE.6166319444

#### **PFAS Classifications and Terminology**

#### >4000 PFAS compounds in commerce

#### **Common Acronyms**

| PFCA  | Perfluoroalkylcarboxylic acid                                  |
|-------|----------------------------------------------------------------|
| PFOA  | Perfluorooctanecarboxylic acid                                 |
| PFAS  | Perfluoroalkylsulfonate                                        |
| PFOS  | Perfluorooctanesulfonate                                       |
| PFASi | Perfluoroalkylsulfinate                                        |
| FOSA  | Per <b>f</b> luoro <b>o</b> ctane <b>s</b> ulfon <b>a</b> mide |
| FOSAA | Perfluorooctanesulfonamidoacetic acid                          |
| FOSE  | Perfluorooctanesulfonamidoethanol                              |
| FTOH  | Fluorinated telomer alcohol (-OH functional group)             |
| FTA   | Fluorinated telomer acid                                       |
| FTUA  | Fluorinated telomer unsaturated acid                           |
| FTS   | Fluorinated telomer sulfonate                                  |
| PFAPA | Perfluoroalkylphosphonic acid                                  |
| PFPi  | Perfluoroalkylphosphinate                                      |
| PAP   | Mono-substituted polyfluoroalkylphosphate ester                |
| diPAP | Di-substituted polyfluoroalkylphosphate ester                  |
| PFAI  | Perfluoroalkyl iodide                                          |
| SFA   | Semifluorinated alkane                                         |
| FTI   | Fluorinated telomer iodide                                     |
| FTO   | Fluorinated telomer olefin                                     |
| FTAC  | Fluorinated telomer acrylate                                   |



Wang, Z et al. (2017). Environ. Sci. Technol. 51, 2508-2518.

10/31/2020

NEMC 2020 DE.6166319444

🔆 Agilent

#### EPA 533 – a method to include "short-chain" PFAS

| EPA 533                                     | EPA 537.1                                |
|---------------------------------------------|------------------------------------------|
| 25 Analytes                                 | 18 Analytes                              |
| SPE with WAX                                | SPE with SDVB                            |
| 28 days hold time                           | 28 days hold time (14 days for analysis) |
| Isotope Dilution                            | Internal Standard                        |
| Final extract in 80% MeOH                   | Final extract in 96% MeOH                |
| 2 ions required for reporting with LC/MS/MS | Confirmation ion not necessary           |
| Drinking Water                              | Drinking Water Only                      |

| Analyte | EPA 537.1    | EPA 533      | Analyte      | EPA 537.1    | EPA 533      |
|---------|--------------|--------------|--------------|--------------|--------------|
| PFBA    |              | $\checkmark$ | PFBS         | $\checkmark$ | $\checkmark$ |
| PFMPA   |              | $\checkmark$ | PFPeS        |              | $\checkmark$ |
| PFPeA   |              | $\checkmark$ | PFHxS        | $\checkmark$ | $\checkmark$ |
| PFMBA   |              | $\checkmark$ | PFHpS        |              | $\checkmark$ |
| PFEESA  |              | $\checkmark$ | PFOS         | $\checkmark$ | $\checkmark$ |
| NFDHA   |              | $\checkmark$ | 9CI-PF3ONS   | $\checkmark$ | $\checkmark$ |
| PFHxA   | $\checkmark$ | $\checkmark$ | 11CI-PF3OUdS | $\checkmark$ | $\checkmark$ |
| HFPO-DA | $\checkmark$ | $\checkmark$ | NEtFOSAA     | $\checkmark$ |              |
| PFHpA   | $\checkmark$ | $\checkmark$ | NMeFOSAA     | $\checkmark$ |              |
| ADONA   | $\checkmark$ | $\checkmark$ | PFTeDA       | $\checkmark$ |              |
| PFOA    | $\checkmark$ | $\checkmark$ | PFTrDA       | $\checkmark$ |              |
| PFNA    | $\checkmark$ | $\checkmark$ | 4:2 FTS      |              | $\checkmark$ |
| PFDA    | $\checkmark$ | $\checkmark$ | 6:2FTS       |              | $\checkmark$ |
| PFUnA   | $\checkmark$ | $\checkmark$ | 8:2FTS       |              | $\checkmark$ |
| PFDoA   | $\checkmark$ | $\checkmark$ |              |              |              |

| 10/31/2020 NE | EMC 2020 DE.61 | 166319444 | * | Agilent |
|---------------|----------------|-----------|---|---------|
|---------------|----------------|-----------|---|---------|

#### EPA 533 – Sample Prep and Chromatography



#### **Experimental Study**

- Triplicate tap water samples were spiked at 3 levels and taken through offline SPE, as per EPA Method 533 using a weak anion exchange resin
- The final extracts were run from the same vials on both the 6470 triple quadrupole (dMRM mode) and 6545 quadrupole time-of-flight mass spectrometers
- Low level sensitivity was compared with both 6545 QTOF & 6470 MS/MS

DE.6166319444



## LC Conditions

| LC Conditions      |                                        |                                |
|--------------------|----------------------------------------|--------------------------------|
| Delay Column       | Agilent ZORBAX SB-C18, 4.6 × 50 mm,    | 3.5 μm (p/n 835975-902)        |
| Analytical Column  | Agilent ZORBAX Eclipse Plus C18, 3 × 5 | 50 mm; 1.8 μm (p/n 959757-302) |
| Column Temperature | 50 °C                                  |                                |
| Injection Volume   | 10 µL                                  |                                |
| Mobile Phase       | A: 20 mM Ammonium Acetate in water     | B: Methanol                    |
| Flow Rate          | 0.40 mL/min                            |                                |
| Gradient program   | Time (min)                             | B (%)                          |
|                    | 0.5                                    | 5                              |
|                    | 0.5                                    | 5                              |
|                    | 3.0                                    | 40                             |
|                    | 16                                     | 80                             |
|                    | 18                                     | 80                             |
|                    | 20                                     | 95                             |
| Stop Time          | 20 min                                 |                                |
| Post Time          | 6 min                                  |                                |



10/31/2020

NEMC 2020 DE.6166319444

Agilent

#### **Instrumental Analysis**

#### **Targeted Quantification**



#### Suspect Screening/Non-target Analysis

Agilent

#### Chromatography – Acids at 1.5 ng/mL (in vial)



peak shape on early eluters distorted due to 10 uL injection which is not needed for EPA 533 sensitivity levels

| 10/31/2020 | NEMC 2020 | DE.6166319444 |  |  |  | Agilent |
|------------|-----------|---------------|--|--|--|---------|
|------------|-----------|---------------|--|--|--|---------|

#### Chromatography – FTS's at 1.5 ng/mL (in vial)



| 10 | 101  | IOC        | $\mathbf{v}$ | ١ |
|----|------|------------|--------------|---|
|    | 1.51 | 121        | 171          |   |
|    |      | / <u>_</u> | ~~~~         |   |

DE.6166319444

### Isotope Dilution Analogs – Precision & Accuracy (n = 9)



#### Low level Recovery Comparison (n=3) 1 ng/L drinking water spike



PFBA & PFHpA had low level background that skewed recovery data Both QTOF & MS/MS give excellent reproducibility at low level spikes too.

#### Mid level Recovery Comparison (n=3) 15 ng/L drinking water spike

EPA LCMRL ranges from 1.4 to 16 ng/L





# High level Recovery Comparison (n=3) 50 ng/L drinking water spike

EPA LCMRL ranges from 1.4 to 16 ng/L







#### Acids - Low Level Calibrator (0.10 ng/mL) 6545 LC-QTOF

This calibration level would correspond to 0.25 ng/L spike in the water sample (250X concentration through SPE as per EPA 533)

#### Acids - Low Level Calibrator (0.003 ng/mL) 6470 LC/MS/MS





10/31/2020

DE.6166319444

**NEMC 2020** 

🔆 Agilent

#### FTS's – Low Level Calibrator (0.39 ng/mL) 6545 LC-QTOF





| 10/31/2020 | NEMC 2020 | DE.6166319444 |  | Agilent |
|------------|-----------|---------------|--|---------|
|            |           |               |  |         |

# Sulfonates – Low Level Calibrator (0.10 ng/mL) 6545 LC-QTOF



Note the branched isomers for PFHxS and PFOS

DE.6166319444

# Advantages of High Resolution Accurate Mass



- Reducing the width of the mass extraction window can eliminate background from interferences that have the same nominal mass but different accurate mass (i.e. the compounds have different chemical formulas).
- ADONA = 376.9689 amu
  - 100 ppm (0.0377 amu) extraction from 376.9312 377.0066
  - 20 ppm (0.0075 amu) extraction from 376.9614 376.9764



## Mass Spectrum Extraction Windows - ADONA



#### Advantage of QTOF - Monitoring suspect PFAS

Simultaneous Quantitation and Screening



**NEMC 2020** 

Filter compounds that are

#### **Monitoring suspect PFAS**

#### Simultaneous Quantitation and Screening



0/31/2020

DE.6166319444

**NEMC 2020** 

Agilent

### Monitoring suspect PFAS

#### Screening summary PDF report

| Screening Summary Report |                                                         |                |       |               |                |            |              | gilent Trusted Answers   |             |
|--------------------------|---------------------------------------------------------|----------------|-------|---------------|----------------|------------|--------------|--------------------------|-------------|
| Sample                   | name: 16AGW                                             | /06            |       | Good          | 4              | War        | ning 17      | Error                    | 354         |
| Status                   | Screening Summary Report                                | Formula        | R.T.  | R.T.<br>Diff. | Match<br>Score | Target Ion | Mass Accurac | y # of Qualified<br>Ions | Final Conc. |
| 1                        | (Heptafluoropropyl)trimethylsilane                      | C6H9F7Si       | 2.694 | 2.692         |                | 241.0289   | 3.95 PP      | M 2                      |             |
| +                        | PFBA                                                    | C4 H F7 O2     | 2.079 | 0.041         |                | 212.9792   | 0.63 PPM     | M 2                      | 472.7851    |
| +                        | PFPeA                                                   | C5 H F9 O2     | 2.777 | 0.031         |                | 262.9760   | 0.47 PP      | M 2                      | 448.9793    |
| 1.1                      | 4:2 FTS                                                 | C6 H5 F9 O3 S  | 3.162 | 0.048         |                | 326.9743   | -0.22 PPM    | M 1                      | 880.0983    |
| +                        | PFHxA                                                   | C6 H F11 O2    | 3.363 | 0.036         |                | 312.9728   | -0.28 PPM    | M 2                      | 475.3056    |
| 1                        | PFBS                                                    | C4 H F9 O3 S   | 3.469 | 0.031         |                | 298.9430   | -0.39 PPM    | M 1                      | 359.3393    |
| 1                        | 3H-Perfluorobutanoic acid                               | C4H2F6O2       | 3.530 | 0.499         |                | 194.9886   | -1.07 PP     | M 1                      |             |
| 1                        | Perfluorooctanesulfonate                                | C8HF1703S      | 5.933 | 1.754         |                | 498.9302   | -1.26 PPM    | M 2                      |             |
| +                        | 6:2 FTS                                                 | C8 H5 F13 O3 S | 4.266 | 0.076         |                | 426.9679   | -0.59 PPM    | M 2                      | 911.3406    |
| 1                        | 2H-Perfluoro(2-methylpentane)                           | C6HF13         | 3.956 | 0.505         |                | 318.9798   | -0.97 PPM    | M 2                      |             |
| 1                        | Perfluoro(2-ethoxyethane)sulfonic acid                  | C4HF9O4S       | 3.785 | 0.778         |                | 314.9379   | 0.46 PPN     | M 2                      |             |
| 1                        | Perfluoropentanesulfonic acid                           | C5HF1103S      | 4.165 | 0.729         |                | 348.9398   | -0.65 PPM    | M 2                      |             |
| 1                        | 1-Hydroperfluoroheptane                                 | C7HF15         | 4.511 | 0.662         |                | 368.9766   | -0.44 PPM    | M 2                      |             |
| 1                        | PFNA                                                    | C9 H F17 O2    | 5.058 | 0.143         |                | 462.9632   | -0.38 PPM    | M 2                      | 303.9080    |
| 1                        | 2,3,3,3-Tetrafluoro-2-(perfluoropentoxy)propan-<br>1-ol | C8H3F15O2      | 4.526 | 0.718         |                | 414.9821   | 0.81 PPM     | M 2                      |             |
| 1.1                      | 1H-Perfluorohexane                                      | C6HF13         | 3.956 | 1.326         |                | 318.9798   | -0.97 PPM    | M2                       |             |
| 1                        | ((Perfluorooctyl)ethyl)phosphonic acid                  | C10H6F17O3P    | 5.300 | 0.485         |                | 526.9710   | 4.37 PP      | M 1                      |             |
| 1                        | 4-[3-(Perfluorobutyl)-1-<br>propyloxy]benzyl�alcohol    | C14H13F9O2     | 6.167 | 0.221         |                | 383.0699   | 2.89 PP      | M 1                      |             |
| 1                        | (Perfluorooctyl)propanoyl chloride                      | C11H4ClF170    | 5.927 | 0.137         |                | 508.9606   | -2.22 PP     | M 1                      |             |
| 1                        | PFOS                                                    | C8 H F17 O3 S  | 5.933 | 0.167         |                | 498,9302   | -1.23 PP     | M 2                      | 63.0760     |
| 1                        | FOSA                                                    | Flagging       | 7.7.1 | 0.015         |                | Flag       | ging 🖻       | 1                        | 0.4484      |
|                          |                                                         |                |       |               |                | numb       | er of        |                          |             |
|                          |                                                         | RT outlier     |       |               |                | Vorifio    | dione        |                          |             |
|                          |                                                         |                |       |               |                | vernie     |              |                          |             |

| 10/31/2020 | NEMC 2020 | DE.6166319444 |  | Agilent |
|------------|-----------|---------------|--|---------|
|            |           |               |  |         |

#### Conclusions

- The QTOF allows simultaneous quantification and suspect screening
  - 6545 QTOF met the sensitivity goals of EPA 533
  - Spike recovery experiments should reproducibility on both the QTOF and MS/MS
  - QTOF data allows retrospective data mining
- LC-MS/MS still offers best sensitivity which can allow greater sample dilutions and direct aqueous injections
- LC-MS/MS and QTOF are complementary techniques for holistic environmental monitoring



10/31/2020

NEMC 2020

DE.6166319444